• <acronym id="mubfz"></acronym>

    <track id="mubfz"><ruby id="mubfz"></ruby></track>
    <object id="mubfz"><form id="mubfz"></form></object>

    1. <big id="mubfz"></big>
      <track id="mubfz"></track>

    2. 侵权投诉

      MOS管学习的详细资料说明

      2021-01-03 17:51 ? 次阅读

      MOS管学名是场效应管,是金属-氧化物-半导体型场效应管,属于绝缘栅型。本文就结构构造、特点、实用电路等几个方面用工程师的话简单描述。

      其结构示意图:

      bf5eec7f361e4e25a6233b96ad49bcf1.jpeg

      解释1:沟道

      上面图中,下边的p型中间一个窄长条就是沟道,使得左右两块P型极连在一起,因此mos管导通后是电阻特性,因此它的一个重要参数就是导通电阻,选用mos管必须清楚这个参数是否符合需求。

      解释2:n型

      上图表示的是p型mos管,读者可以依据此图理解n型的,都是反过来即可。因此,不难理解,n型的如图在栅极加正压会导致导通,而p型的相反。

      解释3:增强型

      相对于耗尽型,增强型是通过“加厚”导电沟道的厚度来导通,如图。栅极电压越低,则p型源、漏极的正离子就越靠近中间,n衬底的负离子就越远离栅极,栅极电压达到一个值,叫阀值或坎压时,由p型游离出来的正离子连在一起,形成通道,就是图示效果。因此,容易理解,栅极电压必须低到一定程度才能导通,电压越低,通道越厚,导通电阻越小。由于电场的强度与距离平方成正比,因此,电场强到一定程度之后,电压下降引起的沟道加厚就不明显了,也是因为n型负离子的“退让”是越来越难的。耗尽型的是事先做出一个导通层,用栅极来加厚或者减薄来控制源漏的导通。但这种管子一般不生产,在市面基本见不到。所以,大家平时说mos管,就默认是增强型的。

      解释4:左右对称

      图示左右是对称的,难免会有人问怎么区分源极和漏极呢?其实原理上,源极和漏极确实是对称的,是不区分的。但在实际应用中,厂家一般在源极和漏极之间连接一个二极管,起?;ぷ饔?,正是这个二极管决定了源极和漏极,这样,封装也就固定了,便于实用。我的老师年轻时用过不带二极管的mos管。非常容易被静电击穿,平时要放在铁质罐子里,它的源极和漏极就是随便接。

      解释5:金属氧化物膜

      图中有指示,这个膜是绝缘的,用来电气隔离,使得栅极只能形成电场,不能通过直流电,因此是用电压控制的。在直流电气上,栅极和源漏极是断路。不难理解,这个膜越?。旱绯∽饔迷胶?、坎压越小、相同栅极电压时导通能力越强?;荡κ牵涸饺菀?a target='_blank' >击穿、工艺制作难度越大而价格越贵。例如导通电阻在欧姆级的,1角人民币左右买一个,而2402等在十毫欧级的,要2元多(批量买。零售是4元左右)。

      解释6:与实物的区别

      上图仅仅是原理性的,实际的元件增加了源-漏之间跨接的?;ざ?,从而区分了源极和漏极。实际的元件,p型的,衬底是接正电源的,使得栅极预先成为相对负电压,因此p型的管子,栅极不用加负电压了,接地就能保证导通。相当于预先形成了不能导通的沟道,严格讲应该是耗尽型了。好处是明显的,应用时抛开了负电压。

      解释7:寄生电容

      上图的栅极通过金属氧化物与衬底形成一个电容,越是高品质的mos,膜越薄,寄生电容越大,经常mos管的寄生电容达到nF级。这个参数是mos管选择时至关重要的参数之一,必须考虑清楚。Mos管用于控制大电流通断,经常被要求数十K乃至数M的开关频率,在这种用途中,栅极信号具有交流特征,频率越高,交流成分越大,寄生电容就能通过交流电流的形式通过电流,形成栅极电流。消耗的电能、产生的热量不可忽视,甚至成为主要问题。为了追求高速,需要强大的栅极驱动,也是这个道理。试想,弱驱动信号瞬间变为高电平,但是为了“灌满”寄生电容需要时间,就会产生上升沿变缓,对开关频率形成重大威胁直至不能工作。

      解释8:如何工作在放大区

      Mos管也能工作在放大区,而且很常见。做镜像电流源、运放、反馈控制等,都是利用mos管工作在放大区,由于mos管的特性,当沟道处于似通非通时,栅极电压直接影响沟道的导电能力,呈现一定的线性关系。由于栅极与源漏隔离,因此其输入阻抗可视为无穷大,当然,随频率增加阻抗就越来越小,一定频率时,就变得不可忽视。这个高阻抗特点被广泛用于运放,运放分析的虚连、虚断两个重要原则就是基于这个特点。这是三极管不可比拟的。

      解释9:发热原因

      Mos管发热,主要原因之一是寄生电容在频繁开启关闭时,显现交流特性而具有阻抗,形成电流。有电流就有发热,并非电场型的就没有电流。另一个原因是当栅极电压爬升缓慢时,导通状态要“路过”一个由关闭到导通的临界点,这时,导通电阻很大,发热比较厉害。第三个原因是导通后,沟道有电阻,过主电流,形成发热。主要考虑的发热是第1和第3点。许多mos管具有结温过高?;?,所谓结温就是金属氧化膜下面的沟道区域温度,一般是150摄氏度。超过此温度,mos管不可能导通。温度下降就恢复。要注意这种?;ぷ刺暮蠊?。

      0 2

      但愿上述描述能通俗的理解mos管,下面说说几个约定俗成电路:

      1:pmos应用

      一般用于管理电源的通断,属于无触点开关,栅极低电平就完全导通,高电平就完全截止。而且,栅极可以加高过电源的电压,意味着可以用5v信号管理3v电源的开关,这个原理也用于电平转换。

      2:nmos管应用

      一般用于管理某电路是否接地,属于无触点开关,栅极高电平就导通导致接地,低电平截止。当然栅极也可以用负电压截止,但这个好处没什么意义。其高电平可以高过被控制部分的电源,因为栅极是隔离的。因此可以用5v信号控制3v系统的某处是否接地,这个原理也用于电平转换。

      3:放大区应用

      工作于放大区,一般用来设计反馈电路,需要的专业知识比较多,类似运放,这里无法细说。常用做镜像电流源、电流反馈、电压反馈等。至于运放的集成应用,我们其实不用关注。人家都做好了,看好datasheet就可以了,不用按mos管方式去考虑导通电阻和寄生电容。

      0 3

      MOS管的基本知识

      现在的高清、液晶、等离子电视机中开关电源部分除了采用了PFC技术外,在元器件上的开关管均采用性能优异的MOS管取代过去的大功率晶体三极管,使整机的效率、可靠性、故障率均大幅的下降。由于MOS管和大功率晶体三极管在结构、特性有着本质上的区别,在应用上;驱动电路也比晶体三极管复杂,致使维修人员对电路、故障的分析倍感困难,此文即针对这一问题,把MOS管及其应用电路作简单介绍,以满足维修人员需求。

      一、什么是MOS管

      MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应管中的绝缘栅型。因此,MOS管有时被称为绝缘栅场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。

      1、MOS管的构造;

      在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。这就构成了一个N沟道(NPN型)增强型MOS管。显然它的栅极和其它电极间是绝缘的。图1-1所示 A 、B分别是它的结构图和代表符号。

      同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP型)增强型MOS管。图1-2所示A 、B分别是P沟道MOS管道结构图和代表符号。

      4717812bf5974412a86ec3f4352abc6a.jpeg

      图1 -1-A 图1 -1-B

      6096554ff6d8418f9eea1b8eb9f0a5d2.jpeg

      图1-2-A 图1-2-B

      2、MOS管的工作原理:图1-3是N沟道MOS管工作原理图;

      22f643b7fdf043be9d25f73d17f32fc9.jpeg

      图1-3-A

      ef94abd8a88949e4ad389f8fa87feafb.jpeg

      图1-3-B

      从图1-3-A可以看出,增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。当栅-源电压VGS=0时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。

      此时若在栅-源极间加上正向电压,图1-3-B所示,即VGS>0,则栅极和硅衬底之间的SiO2绝缘层中便产生一个栅极指向P型硅衬底的电场,由于氧化物层是绝缘的,栅极所加电压VGS无法形成电流,氧化物层的两边就形成了一个电容,VGS等效是对这个电容充电,并形成一个电场,随着VGS逐渐升高,受栅极正电压的吸引,在这个电容的另一边就聚集大量的电子并形成了一个从漏极到源极的N型导电沟道,当VGS大于管子的开启电压VT(一般约为 2V)时,N沟道管开始导通,形成漏极电流ID,我们把开始形成沟道时的栅-源极电压称为开启电压,一般用VT表示??刂普ぜ缪筕GS的大小改变了电场的强弱,就可以达到控制漏极电流ID的大小的目的,这也是MOS管用电场来控制电流的一个重要特点,所以也称之为场效应管。

      3、MOS管的特性;

      上述MOS管的工作原理中可以看出,MOS管的栅极G和源极S之间是绝缘的,由于Sio2绝缘层的存在,在栅极G和源极S之间等效是一个电容存在,电压VGS产生电场从而导致源极-漏极电流的产生。此时的栅极电压VGS决定了漏极电流的大小,控制栅极电压VGS的大小就可以控制漏极电流ID的大小。这就可以得出如下结论:

      1) MOS管是一个由改变电压来控制电流的器件,所以是电压器件。

      2) MOS管道输入特性为容性特性,所以输入阻抗极高。

      4、MOS管的电压极性和符号规则;

      图1-4-A 是N沟道MOS管的符号,图中D是漏极,S是源极,G是栅极,中间的箭头表示衬底,如果箭头向里表示是N沟道的MOS管,箭头向外表示是P沟道的MOS管。

      在实际MOS管生产的过程中衬底在出厂前就和源极连接,所以在符号的规则中;表示衬底的箭头也必须和源极相连接,以区别漏极和源极。图1-5-A是P沟道MOS管的符号。

      MOS管应用电压的极性和我们普通的晶体三极管相同,N沟道的类似NPN晶体三极管,漏极D接正极,源极S接负极,栅极G正电压时导电沟道建立,N沟道MOS管开始工作,如图1-4-B所示。同样P道的类似PNP晶体三极管,漏极D接负极,源极S接正极,栅极G负电压时,导电沟道建立,P沟道MOS管开始工作,如图1-5-B所示。

      89799ebe65354db0b08499aa8ed2e8ef.jpeg

      图1-4-A N沟道MOS管符号

      b5db23f1a2764b4688f97b723332e7ca.jpeg

      图1-4-B N沟道MOS管电压极性及衬底连接

      efd28f64ea9441be859491a813fe6f60.jpeg

      图1-5-A P沟道MOS管符号

      e69f276065af47338359c57d7bd12d69.jpeg

      图1-5-B P沟道MOS管电压极性及衬底连接

      5、MOS管和晶体三极管相比的重要特性;

      1).场效应管的源极S、栅极G、漏极D分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似,图1-6-A所示是N沟道MOS管和NPN型晶体三极管引脚,图1-6-B所示是P沟道MOS管和PNP型晶体三极管引脚对应图。

      e9e6c481864047a09aa1ca79b2cc1f23.jpeg

      图1-6-A 图1-6-B

      2).场效应管是电压控制电流器件,由VGS控制ID,普通的晶体三极管是电流控制电流器件,由IB控制IC。MOS管道放大系数是(跨导gm)当栅极电压改变一伏时能引起漏极电流变化多少安培。晶体三极管是电流放大系数(贝塔β)当基极电流改变一毫安时能引起集电极电流变化多少。

      3).场效应管栅极和其它电极是绝缘的,不产生电流;而三极管工作时基极电流IB决定集电极电流IC。因此场效应管的输入电阻比三极管的输入电阻高的多。

      4).场效应管只有多数载流子参与导电;三极管有多数载流子和少数载流子两种载流子参与导电,因少数载流子浓度受温度、辐射等因素影响较大,所以场效应管比三极管的温度稳定性好。

      5).场效应管在源极未与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大,而三极管的集电极与发射极互换使用时,其特性差异很大,b 值将减小很多。

      6).场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。

      7).场效应管和普通晶体三极管均可组成各种放大电路和开关电路,但是场效应管制造工艺简单,并且又具有普通晶体三极管不能比拟的优秀特性,在各种电路及应用中正逐步的取代普通晶体三极管,目前的大规模和超大规模集成电路中,已经广泛的采用场效应管。

      6、在开关电源电路中;大功率MOS管和大功率晶体三极管相比MOS管的优点;

      1)、输入阻抗高,驱动功率?。河捎谡ぴ粗涫嵌趸瑁⊿iO2)绝缘层,栅源之间的直流电阻基本上就是SiO2绝缘电阻,一般达100MΩ左右,交流输入阻抗基本上就是输入电容的容抗。由于输入阻抗高,对激励信号不会产生压降,有电压就可以驱动,所以驱动功率极?。槊舳雀撸?。一般的晶体三极管必需有基极电压Vb,再产生基极电流Ib,才能驱动集电极电流的产生。晶体三极管的驱动是需要功率的(Vb×Ib)。

      2)、开关速度快:MOSFET的开关速度和输入的容性特性的有很大关系,由于输入容性特性的存在,使开关的速度变慢,但是在作为开关运用时,可降低驱动电路内阻,加快开关速度(输入采用了后述的“灌流电路”驱动,加快了容性的充放电的时间)。MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速,开关时间在10—100ns之间,工作频率可达100kHz以上,普通的晶体三极管由于少数载流子的存储效应,使开关总有滞后现象,影响开关速度的提高(目前采用MOS管的开关电源其工作频率可以轻易的做到100K/S~150K/S,这对于普通的大功率晶体三极管来说是难以想象的)。

      3)、无二次击穿;由于普通的功率晶体三极管具有当温度上升就会导致集电极电流上升(正的温度~电流特性)的现象,而集电极电流的上升又会导致温度进一步的上升,温度进一步的上升,更进一步的导致集电极电流的上升这一恶性循环。而晶体三极管的耐压VCEO随管温度升高是逐步下降,这就形成了管温继续上升、耐压继续下降最终导致晶体三极管的击穿,这是一种导致电视机开关电源管和行输出管损坏率占95%的破环性的热电击穿现象,也称为二次击穿现象。MOS管具有和普通晶体三极管相反的温度~电流特性,即当管温度(或环境温度)上升时,沟道电流IDS反而下降。例如;一只IDS=10A的MOS FET开关管,当VGS控制电压不变时,在250C温度下IDS=3A,当芯片温度升高为1000C时,IDS降低到2A,这种因温度上升而导致沟道电流IDS下降的负温度电流特性,使之不会产生恶性循环而热击穿。也就是MOS管没有二次击穿现象,可见采用MOS管作为开关管,其开关管的损坏率大幅度的降低,近两年电视机开关电源采用MOS管代替过去的普通晶体三极管后,开关管损坏率大大降低也是一个极好的证明。

      4)、MOS管导通后其导通特性呈纯阻性;

      普通晶体三极管在饱和导通是,几乎是直通,有一个极低的压降,称为饱和压降,既然有一个压降,那么也就是;普通晶体三极管在饱和导通后等效是一个阻值极小的电阻,但是这个等效的电阻是一个非线性的电阻(电阻上的电压和流过的电流不能符合欧姆定律),而MOS管作为开关管应用,在饱和导通后也存在一个阻值极小的电阻,但是这个电阻等效一个线性电阻,其电阻的阻值和两端的电压降和流过的电流符合欧姆定律的关系,电流大压降就大,电流小压降就小,导通后既然等效是一个线性元件,线性元件就可以并联应用,当这样两个电阻并联在一起,就有一个自动电流平衡的作用,所以MOS管在一个管子功率不够的时候,可以多管并联应用,且不必另外增加平衡措施(非线性器件是不能直接并联应用的)。

      MOS管和普通的晶体三极管相比,有以上四项优点,就足以使MOS管在开关运用状态下完全取代普通的晶体三极管。目前的技术MOS管道VDS能做到1000V,只能作为开关电源的开关管应用,随着制造工艺的不断进步,VDS的不断提高,取代显像管电视机的行输出管也是近期能实现的。

      二、灌流电路

      1、MOS管作为开关管应用的特殊驱动电路;

      灌流电路MOS管和普通晶体三极管相比,有诸多的优点,但是在作为大功率开关管应用时,由于MOS管具有的容性输入特性,MOS管的输入端,等于是一个小电容器,输入的开关激励信号,实际上是在对这个电容进行反复的充电、放电的过程,在充放电的过程中,使MOS管道导通和关闭产生了滞后,使“开”与“关”的过程变慢,这是开关元件不能允许的(功耗增加,烧坏开关管),如图所示,在图2-1中 A方波为输入端的激励波形,电阻R为激励信号内阻,电容C为MOS管输入端等效电容,激励波形A加到输入端是对等效电容C的充放电作用,

      750103e3a20344abbc44967f86f1fe72.jpeg

      图2-1

      使输入端实际的电压波形变成B的畸变波形,导致开关管不能正??毓ぷ鞫鸹?,解决的方法就是,只要R足够的小,甚至没有阻值,激励信号能提供足够的电流,就能使等效电容迅速的充电、放电,这样MOS开关管就能迅速的“开”、“关”,保证了正常工作。由于激励信号是有内阻的,信号的激励电流也是有限度,我们在作为开关管的MOS管的输入部分,增加一个减少内阻、增加激励电流的“灌流电路”来解决此问题,如图2-2所示。

      d4e49b5c52034700adf2901bd52f4a9d.jpeg

      图2-2

      在图2-2中;在作为开关应用的MOS管Q3的栅极S和激励信号之间增加Q1、Q2两只开关管,此两只管均为普通的晶体三极管,两只管接成串联连接,Q1为NPN型Q2为PNP型,基极连接在一起(实际上是一个PNP、NPN互补的射极跟随器),两只管等效是两只在方波激励信号控制下轮流导通的开关,如图2-2-A、图2-2-B

      当激励方波信号的正半周来到时;晶体三极管Q1(NPN)导通、Q2(PNP)截止,VCC经过Q1导通对MOS开关管Q3的栅极充电,由于Q1是饱和导通,VCC等效是直接加到MOS管Q3的栅极,瞬间充电电流极大,充电时间极短,保证了MOS开关管Q3的迅速的“开”,如图2-2-A所示(图2-2-A和图2-2-B中的电容C为MOS管栅极S的等效电容)。

      当激励方波信号的负半周来到时;晶体三极管Q1(NPN)截止、Q2(PNP)导通,MOS开关管Q3的栅极所充的电荷,经过Q2迅速放电,由于Q2是饱和导通,放电时间极短,保证了MOS开关管Q3的迅速的“关”,如图2-2-B所示。

      1ac789615bac40fbaa84aeca7b5e49d8.jpeg

      图2-2-A 图2-2-B

      由于MOS管在制造工艺上栅极S的引线的电流容量有一定的限度,所以在Q1在饱和导通时VCC对MOS管栅极S的瞬时充电电流巨大,极易损坏MOS管的输入端,为了?;OS管的安全,在具体的电路中必须采取措施限制瞬时充电的电流值,在栅极充电的电路中串接一个适当的充电限流电阻R,如图2-3-A所示。充电限流电阻R的阻值的选??;要根据MOS管的输入电容的大小,激励脉冲的频率及灌流电路的VCC(VCC一般为12V)的大小决定一般在数十姆欧到一百欧姆之间。

      76d382be67e34e6780676be7f23b9377.jpeg

      图2-3-A

      cd1d0ef10ebb4f11a51382ac894783bb.jpeg

      图2-3-B

      由于充电限流电阻的增加,使在激励方波负半周时Q2导通时放电的速度受到限制(充电时是VCC产生电流,放电时是栅极所充的电压VGS产生电流,VGS远远小于VCC,R的存在大大的降低了放电的速率)使MOS管的开关特性变坏,为了使R阻值在放电时不影响迅速放电的速率,在充电限流电阻R上并联一个形成放电通路的二极管D,图2-3-B所示。此二极管在放电时导通,在充电时反偏截止。这样增加了充电限流电阻和放电二极管后,既保证了MOS管的安全,又保证了MOS管,“开”与“关”的迅速动作。

      2、另一种灌流电路

      灌流电路的另外一种形式,对于某些功率较小的开关电源上采用的MOS管往往采用了图2-4-A的电路方式。

      982c8640e5e7435b987a931893a42cfa.jpeg

      图2-4-A

      69e6ddd94d504ef39e78e7b7c9777288.jpeg

      图2-4-B

      图中 D为充电二极管,Q为放电三极管(PNP)。工作过程是这样,当激励方波正半周时,D导通,对MOS管输入端等效电容充电(此时Q截止),在当激励方波负半周时,D截止,Q导通,MOS管栅极S所充电荷,通过Q放电,MOS管完成“开”与“关”的动作,如图2-4-B所示。此电路由激励信号直接“灌流”,激励信号源要求内阻较低。该电路一般应用在功率较小的开关电源上。

      3、MOS管开关应用必须设置泄放电阻;

      MOS管在开关状态工作时;Q1、Q2是轮流导通,MOS管栅极是在反复充电、放电的状态,如果在此时关闭电源,MOS管的栅极就有两种状态;一个状态是;放电状态,栅极等效电容没有电荷存储,一个状态是;充电状态,栅极等效电容正好处于电荷充满状态,图2-5-A所示。虽然电源切断,此时Q1、Q2也都处于断开状态,电荷没有释放的回路,MOS管栅极的电场仍然存在(能保持很长时间),建立导电沟道的条件并没有消失。这样在再次开机瞬间,由于激励信号还没有建立,而开机瞬间MOS管的漏极电源(VDS)随机提供,在导电沟道的作用下,MOS管即刻产生不受控的巨大漏极电流ID,引起MOS管烧坏。为了避免此现象产生,在MOS管的栅极对源极并接一只泄放电阻R1,如图2-5-B所示,关机后栅极存储的电荷通过R1迅速释放,此电阻的阻值不可太大,以保证电荷的迅速释放,一般在5K~数10K左右。

      7959df04a35b4cdc998e35dc89056745.jpeg

      图2-5-A

      e62316afb9af4be6a58e53550e5bf7f8.jpeg

      图2-5-B

      灌流电路主要是针对MOS管在作为开关管运用时其容性的输入特性,引起“开”、“关”动作滞后而设置的电路,当MOS管作为其他用途;例如线性放大等应用,就没有必要设置灌流电路。

      三、大功率MOS管开关电路。实例应用电路分析

      初步的了解了以上的关于MOS管的一些知识后,一般的就可以简单的分析,采用MOS管开关电源的电路了。

      1、 三星等离子V2屏开关电源PFC部分激励电路分析;

      图3-1所示是三星V2屏开关电源,PFC电源部分电原理图,图3-2所示是其等效电路框图。

      c4b2bfbe8710440eb8484243d65cd489.jpeg

      图3-1

      0eefcc20e24a420fa48f47162794e938.jpeg

      图3-2

      图3-1所示;是三星V2屏等离子开关电源的PFC激励部分。从图中可以看出;这是一个并联开关电源L1是储能电感,D10是这个开关电源的整流二极管,Q1、Q2是开关管,为了保证PFC开关电源有足够的功率输出,采用了两只MOS管Q1、Q2并联应用(图3-2所示;是该并联开关电源等效电路图,图中可以看出该并联开关电源是加在整流桥堆和滤波电容C5之间的),图中Q3、Q4是灌流激励管,Q3、Q4的基极输入开关激励信号, VCC-S-R是Q3、Q4的VCC供电(22.5V)。两只开关管Q1、Q2的栅极分别有各自的充电限流电阻和放电二极管,R16是Q2的在激烈信号为正半周时的对Q2栅极等效电容充电的限流电阻,D7是Q2在激烈信号为负半周时的Q2栅极等效电容放电的放电二极管,同样R14、D6则是Q1的充电限流电阻和放电的放电二极管。R17和R18是Q1和Q2的关机栅极电荷泄放电阻。D9是开机瞬间浪涌电流分流二极管。

      2、 三星等离子V4屏开关电源PFC部分激励电路分析;

      图3-3所示;是三星V4屏开关电源PFC激励部分电原理图,可以看出该V4屏电路激励部分原理相同于V2屏。只是在每一只大功率MOS开关管的栅极泄放电阻(R209、R206)上又并联了过压?;ざ?;ZD202、ZD201及ZD204、ZD203

      50266bdad4ca498e87c4674e2703a9fa.jpeg

      图3-3

      3、 海信液晶开关电源PFC部分激励电路分析,图3-4所示;

      海信液晶电视32寸~46寸均采用该开关电源,电源采用了复合集成电路SMA—E1017(PFC和PWM共用一块复合激励集成电路),同样该PFC开关电源部分也是一个并联的开关电源,图3-4所示。TE001是储能电感、DE004是开关电源的整流管、QE001、QE002是两只并联的大功率MOS开关管。该集成电路的PFCOUTPUT端子是激励输出,,RE008、RE009、RE010、VE001、DE002、RE011、DE003组成QE001和QE002的灌流电路。

      d1fbf632a40947efb60acf30592650de.jpeg

      图3-4

      灌流电路的等效电路如图3-5所示,从图中,可以清晰的看出该灌流电路的原理及各个元件的作用。

      从等效电路图来分析,集成电路的激励输出端(PFCOUTPUT端子),输出方波的正半周时DE002导通,经过RE008、RE010对MOS开关管QE001和QE002的栅极充电,当激励端为负半周时,DE002截止,由于晶体三极管VE001是PNP型,负半周信号致使VE001导通,此时;QE001和QE002的栅极所充电荷经过VE001放电,MOS管完成“开”、“关”周期的工作。从图3-5的分析中,RE011作用是充电的限流电阻,而在放电时由于VE001的存在和导通,已经建立了放电的回路,DE003的作用是加速VE001的导通,开关管关闭更加迅速。

      图3-4所示原理图是PFC开关电源及PWM开关电源的电原理图,该电路中的集成电路MSA-E1017是把PFC部分的激励控制和PWM部分激励控制复合在一块集成电路中,图3-6是原理框图,图中的QE003及TE002是PWM开关电源的开关管及开关变压器,RE050是QE003的充电限流电阻、DE020是其放电二极管。

      ae873f9afa794abda5e66a88de6f2728.jpeg

      图3-5

      eab56a6d22e1474ebf9eb901bdc088b9.jpeg

      图3-6

      四、MOS管的防静电?;?/p>

      MOS管是属于绝缘栅场效应管,栅极是无直流通路,输入阻抗极高,极易引起静电荷聚集,产生较高的电压将栅极和源极之间的绝缘层击穿。早期生产的MOS管大都没有防静电的措施,所以在保管及应用上要非常小心,特别是功率较小的MOS管,由于功率较小的MOS管输入电容比较小,接触到静电时产生的电压较高,容易引起静电击穿。而近期的增强型大功率MOS管则有比较大的区别,首先由于功能较大输入电容也比较大,这样接触到静电就有一个充电的过程,产生的电压较小,引起击穿的可能较小,再者现在的大功率MOS管在内部的栅极和源极有一个?;さ奈妊构蹹Z(图4-1所示),把静电嵌位于?;の妊苟艿奈妊怪狄韵?,有效的?;ち苏ぜ驮醇木挡?,不同功率、不同型号的MOS管其?;の妊苟艿奈妊怪凳遣煌?。虽然MOS管内部有了?;ご胧?,我们操作时也应按照防静电的操作规程进行,这是一个合格的维修员应该具备的。

      306014198d8f40b788c3992bd6288510.jpeg

      图4-1

      五、MOS管的检测与代换

      在修理电视机及电器设备时,会遇到各种元器件的损坏,MOS管也在其中,这就是我们的维修人员如何利用常用的万用表来判断MOS管的好坏、优劣。在更换MOS管是如果没有相同厂家及相同型号时,如何代换的问题。

      1、MOS管的测试

      作为一般的电器电视机维修人员在测量晶体三极管或二极管时,一般是采用普通的万用表来判断三极管或者二极管的好坏,虽然对所判断的三极管或二极管的电气参数没法确认,但是只要方法正确对于确认晶体三极管的“好”与“坏”还是没有问题的。同样MOS管也可以应用万用表来判断其“好”与“坏”,从一般的维修来说,也可以满足需求了。

      检测必须采用指针式万用表(数字表是不适宜测量半导体器件的)。对于功率型MOSFET开关管都属N沟道增强型,各生产厂的产品也几乎都采用相同的TO-220F封装形式(指用于开关电源中功率为50—200W的场效应开关管),其三个电极排列也一致,即将三只引脚向下,打印型号面向自巳,左侧引脚为栅极,右测引脚为源极,中间引脚为漏极如图5-1所示。

      1826f26f804449bcb1d89d9d7fa958c0.png

      图5-1

      1)万用表及相关的准备:

      首先在测量前应该会使用万用表,特别是欧姆档的应用,要了解欧姆挡才会正确应用欧姆挡来测量晶体三极管及MOS管(现在很多的从事修理人员,不会使用万用表,特别是万用表的欧姆挡,这绝不是危言耸听,问问他?他知道欧姆挡的R×1 R×10 R×100 R×1K R×10K,在表笔短路时,流过表笔的电流分别有多大吗?这个电流就是流过被测元件的电流。他知道欧姆挡在表笔开路时表笔两端的电压有多大吗?这就是在测量时被测元件在测量时所承受的电压)关于正确使用万用表欧姆挡的问题,可以参阅可以参阅“您会用万用表的欧姆挡测量二极管、三极管吗?”“可以参阅本博客“您会用万用表的欧姆挡测量二极管、三极管吗?”一文,因篇幅问题这里不再赘述。

      用万用表的欧姆挡的欧姆中心刻度不能太大,最好小于12Ω(500型表为12Ω),这样在R×1挡可以有较大的电流,对于PN结的正向特性判断比较准确。万用表R×10K挡内部的电池最好大于9V,这样在测量PN结反相漏电流时比较准确,否则漏电也测不出来。

      192a01a73a1d41f8b4886eabc1de1d02.jpeg

      图5-2

      现在由于生产工艺的进步,出厂的筛选、检测都很严格,我们一般判断只要判断MOS管不漏电、不击穿短路、内部不断路、能放大就可以了,方法极为简单:

      采用万用表的R×10K挡;R×10K挡内部的电池一般是9V加1.5V达到10.5V这个电压一般判断PN结点反相漏电是够了,万用表的红表笔是负电位(接内部电池的负极),万用表的黑表笔是正电位(接内部电池的正极),图5-2所示。

      2)测试步骤

      把红表笔接到MOS管的源极S;把黑表笔接到MOS管的漏极D,此时表针指示应该为无穷大,如图5-3所示。如果有欧姆指数,说明被测管有漏电现象,此管不能用。

      4a473ab1a4e44b829ca85f99570fe814.jpeg

      图5-3

      保持上述状态;此时用一只100K~200K电阻连接于栅极和漏极,如图5-4所示;这时表针指示欧姆数应该越小越好,一般能指示到0欧姆,这时是正电荷通过100K电阻对MOS管的栅极充电,产生栅极电场,由于电场产生导致导电沟道致使漏极和源极导通,所以万用表指针偏转,偏转的角度大(欧姆指数?。┲っ鞣诺缧阅芎?。

      b6ad90bdea6a4e2a8eecf34a29c1f5d2.jpeg

      图5-4

      此时在图5-4的状态;再把连接的电阻移开,这时万用表的指针仍然应该是MOS管导通的指数不变,如图5-5所示。虽然电阻拿开,但是因为电阻对栅极所充的电荷并没有消失,栅极电场继续维持,内部导电沟道仍然保持,这就是绝缘栅型MOS管的特点。如果电阻拿开表针会慢慢的逐步的退回到高阻甚至退回到无穷大,要考虑该被测管栅极漏电。

      8347f4c976f2485fa464cd9bc5aa82a1.jpeg

      图5-5

      这时用一根导线,连接被测管的栅极和源极,万用表的指针立即返回到无穷大,如图5-6所示。导线的连接使被测MOS管,栅极电荷释放,内部电场消失;导电沟道也消失,所以漏极和源极之间电阻又变成无穷大。

      2763f34a5c1a465da5d68013f61875ca.png

      图5-6

      2、MOS管的更换

      在修理电视机及各种电器设备时,遇到元器件损坏应该采用相同型号的元件进行更换。但是,有时相同的元件手边没有,就要采用其他型号的进行代换,这样就要考虑到各方面的性能、参数、外形尺寸等,例如电视的里面的行输出管,只要考虑耐压、电流、功率一般是可以进行代换的(行输出管外观尺寸几乎相同),而且功率往往大一些更好。对于MOS管代换虽然也是这一原则,最好是原型号的最好,特别是不要追求功率要大一些,因为功率大;输入电容就大,换了后和激励电路就不匹配了,激励灌流电路的充电限流电阻的阻值的大小和MOS管的输入电容是有关系的,选用功率大的尽管容量大了,但输入电容也就大了,激励电路的配合就不好了,这反而会使MOS管的开、关性能变坏。所示代换不同型号的MOS管,要考虑到其输入电容这一参数。例如有一款42寸液晶电视的背光高压板损坏,经过检查是内部的大功率MOS管损坏,因为无原型号的代换,就选用了一个,电压、电流、功率均不小于原来的MOS管替换,结果是背光管出现连续的闪烁(启动困难),最后还是换上原来一样型号的才解决问题。

      检测到MOS管损坏后,更换时其周边的灌流电路的元件也必须全部更换,因为该MOS管的损坏也可能是灌流电路元件的欠佳引起MOS管损坏。即便是MOS管本身原因损坏,在MOS管击穿的瞬间,灌流电路元件也受到伤害,也应该更换。就像我们有很多高明的维修师傅在修理A3开关电源时;只要发现开关管击穿,就也把前面的2SC3807激励管一起更换一样道理(尽管2SC3807管,用万用表测量是好的)。

      另外 “工欲善其事必先利其器”准备一本MOS管手册、一块好的万用表(欧姆挡中心刻度12欧或更?。?、一套好的工具是必须的。

      收藏 人收藏
      分享:

      评论

      相关推荐

      三种IGBT驱动电路和?;し椒?/a>

      三种IGBT驱动电路和?;し椒?新型电源技术作业答案)-三种IGBT驱动电路和?;し椒?,非常不错,受....
      发表于 09-17 17:01 ? 0次 阅读
      三种IGBT驱动电路和?;し椒? />    </a>
</div><div class=

      英特尔将在未来10年投资800亿欧元建芯片厂在欧洲

      电子发烧友网报道(文/黄山明)近日,全球知名芯片大厂英特尔表示,将在未来10年投资800亿欧元用于欧....
      的头像 电子发烧友网 发表于 09-17 11:25 ? 289次 阅读

      佰维存储获大基金千万投资

      国家集成电路产业投资基金(下文简称“大基金”)一期自七月以来有多次减持动作,但与此同时,大基金二期也....
      的头像 电子发烧友网 发表于 09-17 11:03 ? 68次 阅读

      打印机的原理是什么

      打印机原理        激光技术出现于60年代,真正投入实际应用始于70年代初期。最早的激光发射器是...
      发表于 09-17 06:23 ? 0次 阅读

      怎样去设计一种三相无刷直流电机典型驱动电路

      无刷直流电机的工作原理是什么? 无刷直流电机是有哪些部分组成的? 怎样去设计一种三相无刷直流电机典型驱动电路? ...
      发表于 09-16 07:11 ? 0次 阅读

      散热风扇12v直流无刷电动机驱动电路

      散热风扇12v直流无刷电动机驱动电路(实用开关电源技术)-散热风扇12v直流无刷电动机驱动电路
      发表于 09-15 17:52 ? 9次 阅读
      散热风扇12v直流无刷电动机驱动电路

      基于IR2136的无刷直流电机驱动电路的设计

      基于IR2136的无刷直流电机驱动电路的设计(当今电源技术的发展趋势是什么)-?基于IR2136的无....
      发表于 09-15 17:03 ? 10次 阅读
      基于IR2136的无刷直流电机驱动电路的设计

      半导体、芯片与集成电路有何区别

      写在前面的题外话:电子元器件是电子元件和小型的机器、仪器的组成部分,其本身常由若干零件构成,可以在同类产品中通用;常指电...
      发表于 09-15 09:04 ? 0次 阅读

      半导体的定义及其作用

      半导体指常温下导电性能介于导体与绝缘体之间的材料,它在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域...
      发表于 09-15 07:24 ? 0次 阅读

      集成电路与半导体

      集成电路是一种微型电子器件或部件,它是采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制...
      发表于 09-15 06:45 ? 0次 阅读

      Pasternack推出新型大功率PIN二极管同轴封装开关

      新型大功率PIN二极管开关采用的是GaN半导体技术 Infinite Electronics旗下品牌....
      的头像 PASTERNACK 发表于 09-14 11:28 ? 85次 阅读

      汽车电气化趋势下众企纷纷布局车用SiC市场

      电子发烧友网报道(文/李诚)随着科技的不断迭代更新,汽车领域进入了电气化时代。电动汽车的电力驱动系统....
      的头像 电子发烧友网 发表于 09-14 10:03 ? 469次 阅读

      比亚迪半导体展现以车规级半导体为核心的先进技术亮点

      9月9-11日,PCIM Asia 2021深圳国际电力元件、可再生能源管理展览会于深圳国际会展中心....
      的头像 比亚迪半导体 发表于 09-14 09:53 ? 207次 阅读

      一个简单的单芯片方案

      以前的博客中介绍过一款分立元器件实现的H桥的博文,现在提供一个更简单的单芯片方案。驱动电路主要由一款DRV8841芯片组成,...
      发表于 09-14 08:37 ? 0次 阅读

      MOS管驱动电路主功能电路

      此电路分主电路(完成功能)和?;すδ艿缏??!局鞴δ艿缏贰縋WM信号-MOS管-电机-VIN-地【其他元件组成的电路就是?;さ缏?..
      发表于 09-14 06:15 ? 0次 阅读

      大基金加快减持对市场有何影响

      电子发烧友网报道(文/李弯弯)近期,大基金减持大有加速之势,9月以来多家半导体企业发布公告成,股东大....
      的头像 电子发烧友网 发表于 09-13 10:27 ? 171次 阅读

      大联大推出数字汽车钥匙解决方案

      2021年9月1日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布其旗下世平推出基于....
      的头像 大联大 发表于 09-13 09:44 ? 513次 阅读

      大基金二期投资佰维存储,进一步完善芯片产业链布局

      记者从企查查网获悉,国家集成电路产业投资基金二期股份有限公司(简称“大基金二期”)于2021年9月1....
      发表于 09-13 09:33 ? 41次 阅读
      大基金二期投资佰维存储,进一步完善芯片产业链布局

      一座就要百亿美元,晶圆厂为何这么贵?

      电子发烧友网报道(文/黄山明)近期,中芯国际、三星甚至TI都爆出想要建设晶圆厂的消息,此前,英特尔、....
      的头像 Simon观察 发表于 09-13 07:25 ? 1310次 阅读
      一座就要百亿美元,晶圆厂为何这么贵?

      半导体激光器寿命LD的失效方法

      半导体激光器的寿命是一个很关键的参数,在各种应用中必须保证足够长的工作寿命,尤其在海底光缆通信、卫星....
      的头像 芯片工艺技术 发表于 09-12 10:41 ? 393次 阅读
      半导体激光器寿命LD的失效方法

      给7805做一个用MOS防反接?;さ缏?/a>

      7805一不小心接反就烧坏了,想给它做个?;?,手上刚好有MOS管就选用了MOS管方案,D3是当电源指示灯,D1是5V500mA负载,...
      发表于 09-11 09:47 ? 164次 阅读
      给7805做一个用MOS防反接?;さ缏? />    </a>
</div><div class=

      MOS和三极管驱动电路

      MOS和三极管驱动电路 1.用三极管Q4的漏电流为(3.3-0.7)/1K=3.6mA 2.用NMOS Q5的电流几乎为0,所以用NMO...
      发表于 09-10 14:56 ? 165次 阅读
      MOS和三极管驱动电路

      虹科开路和短路测试的背景

      1 客户背景 Amkor Technology 是全球最大的合同半导体组装和测试服务提供商之一。Am....
      的头像 广州虹科电子科技有限公司 发表于 09-10 10:46 ? 238次 阅读
      虹科开路和短路测试的背景

      示波器电压探头电路原理详解

      随着宽禁带半导体器件的发展,电力电子器件的开关速度越来越快,工作电压逐渐升高,也使电压探头的性能对电....
      发表于 09-10 10:19 ? 83次 阅读

      半导体多路开关的特点有哪些

      1. 答:半导体多路开关的特点是:(答5条即可)(1)采用标准的双列直插式结构,尺寸小,便于安排;(2)直接与TTL(或CMOS)电平...
      发表于 09-10 06:57 ? 0次 阅读

      首批省级工业产业链试点示范项目名单公布,华微电子成功入选

      作为东北老工业基地的重要组成部分,吉林省经济发展是振兴东北的重要途径,在我国社会经济发展过程中具有重....
      的头像 话说科技 发表于 09-08 16:56 ? 160次 阅读

      博世的半导体业务明星产品

      提到博世,相信大家会有这样的第一印象:哦,是那个全球领先的汽车技术供应商!嗯,是那个电动工具质量贼好....
      的头像 博世汽车电子事业部 发表于 09-07 11:31 ? 899次 阅读

      瑞能半导体将在PCIM Asia亮相

      9月9日,PCIM Asia——国际电力元件、可再生能源管理展览会将正式开幕。作为亚洲地区专注电力电....
      的头像 瑞能半导体 发表于 09-06 15:38 ? 276次 阅读

      18家半导体行业上市公司半年报 究竟几家欢喜几家哀愁

      电子发烧友网报道(文/李弯弯)对于半导体行业来说,今年上半年可谓是极其特殊的一年,全球芯片供不应求,....
      的头像 电子发烧友网 发表于 09-06 14:28 ? 438次 阅读

      向高端类IMU应用迈步—国产IMU技术应用分析

      电子发烧友网报道(文/李宁远)上一期中挑选了国外三家知名的IMU厂商的主流IMU产品进行盘点分析???...
      的头像 电子发烧友网 发表于 09-06 10:16 ? 729次 阅读

      18家上市公司半年报,透露半导体行业的“喜”与“忧”!

      电子发烧友网报道(文/李弯弯)对于半导体行业来说,今年上半年可谓是极其特殊的一年,全球芯片供不应求,....
      的头像 Carol Li 发表于 09-05 07:11 ? 1052次 阅读
      18家上市公司半年报,透露半导体行业的“喜”与“忧”!

      北京证交所设立,这167家半导体相关企业要起飞了?!

      电子发烧友网报道(文/吴子鹏) 9月2日晚间,国家领导人在2021年中国国际服务贸易交易会视频致辞中....
      发表于 09-04 09:00 ? 902次 阅读
      北京证交所设立,这167家半导体相关企业要起飞了?!

      无线液位传感器是因为什么导致故障的

      无线传感器是一种用于监测和控制系统的传感器,利用超声波的传输和接收计算传播的距离。 无线液位传感器的....
      的头像 汽车玩家 发表于 09-03 17:15 ? 163次 阅读

      反激电源中如何抑制振铃

      反激电源作为最常用的拓扑之一,设计好变压器和MOS这两个器件就很重要,变压器的漏感会带来原边振铃,其....
      的头像 MPS芯源系统 发表于 09-03 09:57 ? 240次 阅读
      反激电源中如何抑制振铃

      国产额姆休(MCU)这次要稳了

      最近,麦克疯了想说的话题有很多,例如美国传言要复供HW,汽车自动驾驶进入回调期,中国电信回归A股股份....
      的头像 电子发烧友网 发表于 09-02 14:19 ? 730次 阅读

      砥砺奋进30年,SK集团贯彻幸福经营,与中国市场共成长

      今年是SK集团自1991年进入中国以来在华成长的第30年。作为首家在华设立分支机构的韩国企业之一,S....
      的头像 话说科技 发表于 09-02 13:48 ? 232次 阅读
      砥砺奋进30年,SK集团贯彻幸福经营,与中国市场共成长

      固晶机行业黑马卓兴半导体,凭COB整体解决方案异军突起

      随着终端显示设备的更新换代,无论背光还是直显,小间距LED、Mini LED乃至Micro LED技....
      的头像 话说科技 发表于 09-02 10:02 ? 258次 阅读
      固晶机行业黑马卓兴半导体,凭COB整体解决方案异军突起

      为了半导体的利益,白宫无视他国法律,下令他国提前释放犯人

      据俄塔斯社8月30日报道,近期三星集团的接班人李在镕被假释出狱,距离他被关进监狱也只有7个多月的时间....
      发表于 09-01 16:05 ? 41次 阅读

      缺芯已严重到这程度,博世高管称汽车行业半导体供应链已崩溃

      当前汽车芯片的“缺芯”已经成为汽车行业心中的难言之痛,受此影响,本田、大众、通用,以及一众国产汽车品....
      发表于 09-01 15:56 ? 133次 阅读

      冰箱的工作原理 冰箱1-7档哪个最冷一把调几档合适

      冰箱是一种保持恒定低温的一种制冷设备,是每家每户都必备的小家电,根据分裂的不同,冰箱的工作原理可以分....
      的头像 Les 发表于 08-31 18:04 ? 565次 阅读

      面对「缺芯潮」,斯坦德机器人为半导体行业做了什么?

      全球缺芯潮愈演愈烈,从上游晶圆缺货,到供货商囤积居奇,再到国际形势不容乐观的种种景象,都在预示着芯片....
      发表于 08-31 14:39 ? 650次 阅读
      面对「缺芯潮」,斯坦德机器人为半导体行业做了什么?

      BOE(京东方)2021上半年业绩创历史新高:营收破千亿 净利润大增逾10倍

      8月30日晚,京东方科技集团股份有限公司(京东方A:000725;京东方B:200725)发布202....
      发表于 08-31 11:51 ? 677次 阅读

      长电科技上半年利润超全年,高增长不只靠“时势”

      近两年里,全球芯片市场需求旺盛,带动IC产业链上下游企业业绩上扬。依托这一轮行业景气周期,国内封测企....
      的头像 话说科技 发表于 08-31 11:24 ? 266次 阅读

      半导体超级周期开启,电脑攒机成为“奢侈品”,iPhone 13要涨价?

      向水面投入一颗石头,呈现出的也许是一圈又一圈的涟漪,也可能是一石激起千层浪,关键点在于石头的体积和重....
      发表于 08-31 09:00 ? 854次 阅读
      半导体超级周期开启,电脑攒机成为“奢侈品”,iPhone 13要涨价?

      JLSemi 景略半导体与韦尔股份强强联合,进军车载视频传输芯片领域

      JLSemi景略半导体与韦尔股份成立半导体合资公司,专注车载视频传输芯片,携手为下一代智能汽车提供端....
      的头像 科讯视点 发表于 08-30 14:38 ? 397次 阅读
      JLSemi 景略半导体与韦尔股份强强联合,进军车载视频传输芯片领域

      芯和半导体联合新思科技业界首发, 前所未有的“3DIC先进封装设计分析全流程”EDA平台

      2021年8月30日,中国上海讯——国产EDA行业的领军企业芯和半导体发布了前所未有的“3DIC先进....
      的头像 话说科技 发表于 08-30 13:32 ? 292次 阅读

      红外感应技术原理、类别及发展趋势

      红外感应技术也称为红外探测技术,是物联网应用中的基本技术(其中还包括RFID和GPS定位技术等)之一....
      的头像 论智 发表于 08-27 14:45 ? 494次 阅读

      台积电市值亚洲第一、联发科Q2再创新高,站上巅峰的台湾半导体

      电子发烧友网报道(文/黄晶晶)近两年,在中美贸易战、全球新冠疫情的经济社会大背景下,台湾半导体应该是....
      的头像 芯链 发表于 08-27 08:30 ? 2976次 阅读
      台积电市值亚洲第一、联发科Q2再创新高,站上巅峰的台湾半导体

      如何准确地找到产品失效原因

      失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及。它一般根据失效模式和现象,通过分析和验....
      的头像 安靠上海 发表于 08-26 17:15 ? 540次 阅读

      环境监测推动气体传感器市场

      气体传感器 主要可分为:半导体型气体 传感器 、电化学型气体传感器、 PI D气体传感器、光化学型气....
      的头像 汇春科技 发表于 08-26 15:26 ? 1338次 阅读

      长电科技上半年延续高增长 大力布局先进封装功不可没

      5G通信与新能源汽车引领的新一轮科技迭代浪潮,将全球半导体行业引入了新一轮景气周期。面对强劲市场需求....
      的头像 科讯视点 发表于 08-26 13:42 ? 834次 阅读

      思达科技冥王星一体化可靠性测试系统已开始接单出货

      半导体参数与可靠性系统领导厂商—思达科技,宣布冥王星Pluto系列per-pin SMU测试系统,获....
      发表于 08-26 10:04 ? 660次 阅读
      思达科技冥王星一体化可靠性测试系统已开始接单出货

      A股1013家公司花6229亿元买理财!说说半导体公司买理财那些事儿

      上市公司使用闲置资金购买理财产品,是很多见的情况,根据Wind数据统计,2021年1月1日到7月5日....
      的头像 Carol Li 发表于 08-26 09:51 ? 1162次 阅读
      A股1013家公司花6229亿元买理财!说说半导体公司买理财那些事儿

      未来3年2050亿美元,三星这钱投向哪?

      北京时间8月24日,三星集团对外表示,未来三年内集团将在后疫情时代投资240万亿韩元(约合2050亿....
      发表于 08-26 09:00 ? 326次 阅读
      未来3年2050亿美元,三星这钱投向哪?

      2021研讨会?杭州站在杭州市滨江区正泰大厦圆满举办

      2021年7月8日,杭州季丰电子科技有限公司开业典礼暨季丰电子2021研讨会?杭州站在杭州市滨江区正....
      的头像 TCL集团IT助手 发表于 08-25 11:48 ? 976次 阅读

      格芯正在进行IPO筹备工作 英特尔收购计划泡汤

      近日,据外媒报道,有消息人士透露,全球半导体代工大厂格芯(GlobalFoundries)已经秘密向....
      的头像 微流控科技 发表于 08-25 11:20 ? 311次 阅读

      ADI 收购 Maxim获中国反垄断许可!正面硬刚TI!

      ADI和 Maxim宣布,ADI收购Maxim获得中国国家市场监督管理总局反垄断许可。目前该交易现已....
      发表于 08-24 17:50 ? 152次 阅读

      长电科技业绩跃迁 2021上 半年利润已超过去年全年

      8月20日晚间,全球领先的集成电路制造和技术服务提供商江苏长电科技股份有限公司(简称:长电科技,股票....
      的头像 话说科技 发表于 08-24 16:41 ? 2198次 阅读

      音圈模组使半导体元件检测更简单

      音圈模组使半导体元件检测更简单。在智能产品快速发展的当下,半导体是非常重要的。而半导体元件生产中,用....
      发表于 08-24 15:53 ? 49次 阅读

      硅材料有哪些 硅的用途是什么

      硅材料是一种产量最大、应用最广的半导体材料,主要以功率器件、微波器件为应用和发展方向,一般用在各类半....
      的头像 汽车玩家 发表于 08-24 14:21 ? 1207次 阅读

      LM324LV 4 通道行业标准低电压运算放大器

      LM3xxLV系列包括单个LM321LV,双LM358LV和四个LM324LVoperational放大器或运算放大器。这些器件采用2.7 V至5.5 V的低电压工作。 这些运算放大器是LM321,LM358和LM324的替代产品,适用于对成本敏感的低电压应用。一些应用是大型电器,烟雾探测器和个人电子产品。 LM3xxLV器件在低电压下提供比LM3xx器件更好的性能,并且功耗更低。运算放大器在单位增益下稳定,在过驱动条件下不会反相。 ESD设计为LM3xxLV系列提供了至少2 kV的HBM规格。 LM3xxLV系列提供具有行业标准的封装。这些封装包括SOT-23,SOIC,VSSOP和TSSOP封装。 特性 用于成本敏感系统的工业标准放大器 低输入失调电压:±1 mV 共模电压范围包括接地 单位增益带宽:1 MHz 低宽带噪声:40 nV /√ Hz < li>低静态电流:90μA/Ch 单位增益稳定 工作电压为2.7 V至5.5 V 提供单,双和四通道变体 稳健的ESD规范:2 kV HBM 扩展温度范围:-40°C至125°C 所有商标均为其各自所有者的财产。 参数 与其它产品相比?通用 运算放大器 ? Number of channels (#) Total Supply Voltage (Min) (+5V=5, +/-5V=1...
      发表于 01-08 17:51 ? 1839次 阅读
      LM324LV 4 通道行业标准低电压运算放大器

      TLV9052 5MHz、15-V/μs 高转换率 RRIO 运算放大器

      TLV9051,TLV9052和TLV9054器件分别是单,双和四运算放大器。这些器件针对1.8 V至5.5 V的低电压工作进行了优化。输入和输出可以以非常高的压摆率从轨到轨工作。这些器件非常适用于需要低压工作,高压摆率和低静态电流的成本受限应用。这些应用包括大型电器和三相电机的控制。 TLV905x系列的容性负载驱动为200 pF,电阻性开环输出阻抗使容性稳定更高,容性更高。 TLV905x系列易于使用,因为器件是统一的 - 增益稳定,包括一个RFI和EMI滤波器,在过载条件下不会发生反相。 特性 高转换率:15 V /μs 低静态电流:330μA 轨道-to-Rail输入和输出 低输入失调电压:±0.33 mV 单位增益带宽:5 MHz 低宽带噪声:15 nV /√ Hz 低输入偏置电流:2 pA Unity-Gain稳定 内部RFI和EMI滤波器 适用于低成本应用的可扩展CMOS运算放大器系列 工作电压低至1.8 V 由于电阻开环,电容负载更容易稳定输出阻抗 扩展温度范围:-40°C至125°C 所有商标均为其各自所有者的财产。 参数 与其它产品相比?通用 运算放大器 ? Number of channels (#) Total Supply Voltage (Min) (+5V=5, +/-5V=10) Total Supply Vo...
      发表于 01-08 17:51 ? 439次 阅读
      TLV9052 5MHz、15-V/μs 高转换率 RRIO 运算放大器

      TMP422-EP 增强型产品,具有 N 因数和串联电阻校正的 ±1°C 双路远程和本地温度传感器

      TMP422是具有内置本地温度传感器的远程温度传感器监视器。远程温度传感器具有二极管连接的晶体管 - 通常是低成本,NPN-或者PNP - 类晶体管或者作为微控制器,微处理器,或者FPGA组成部分的二极管。 无需校准,对多生产商的远程精度是±1°C。这个2线串行接口接受SMBus写字节,读字节,发送字节和接收字节命令对此器件进行配置。 TMP422包括串联电阻抵消,可编程非理想性因子,大范围远程温度测量(高达150℃),和二极管错误检测。 TMP422采用SOT23-8封装。 特性 SOT23-8封装 ±1°C远程二极管传感器(最大值) ±2.5°C本地温度传感器(最大值) 串联电阻抵消 n-因子校正 两线/SMBus串口 多重接口地址 二极管故障检测 RoHS兼容和无Sb /Br 参数 与其它产品相比?数字温度传感器 ? Interface Local sensor accuracy (Max) (+/- C) Temp Resolution (Max) (bits) Operating temperature range (C) Supply Voltage (Min) (V) Supply Voltage (Max) (V) Supply Current (Max) (uA) Features Remote channels (#) Rating Package Group Package size: mm2:W x L (PKG) ? TMP422-...
      发表于 01-08 17:51 ? 378次 阅读
      TMP422-EP 增强型产品,具有 N 因数和串联电阻校正的 ±1°C 双路远程和本地温度传感器

      LP8733-Q1 LP8733-Q1 双路高电流降压转换器和双路线性稳压器

      LP8733xx-Q1专为满足的电源管理要求而设计,这些处理器和平台用于汽车应用中的闭环性能。该器件具有两个可配置为单个两相稳压器或两个单相稳压器的降压直流/直流转换器和两个线性稳压器以及通用数字输出信号。该器件由I 2 C兼容串行接口和使能信号进行控制。 自动PWM /PFM(AUTO模式)操作与自动相位增加/减少相结合,可在较宽输出电流范围内最大限度地提高效率.LP8733xx-Q1支持远程电压检测(采用两相配置的差分),可补偿稳压器输出与负载点(POL)之间的IR压降,从而提高输出电压的精度。此外,可以强制开关时钟进入PWM模式以及将其与外部时钟同步,从而最大限度地降低干扰。 LP8733xx-Q1器件支持可编程启动和关断延迟与排序(包括与使能信号同步的GPO信号)。在启动和电压变化期间,器件会对出转换率进行控制,从而最大限度地减小输出电压过冲和浪涌电流。 特性 具有符合 AEC-Q100 标准的下列特性:器件温度 1 级:-40℃ 至 +125℃ 的环境运行温度范围输入电压:2.8V 至 5.5V两个高效降压直流/直流转换器:输出电压:0.7V 至 3.36V最大输出电流 3A/相采用两相配置的自动相位增加/减少和强制多相操作采用两相配置的远...
      发表于 01-08 17:51 ? 485次 阅读
      LP8733-Q1 LP8733-Q1 双路高电流降压转换器和双路线性稳压器

      TPS3840 具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器

      TPS3840系列电压监控器或复位IC可在高电压下工作,同时在整个V DD 上保持非常低的静态电流和温度范围。 TPS3840提供低功耗,高精度和低传播延迟的最佳组合(t p_HL =30μs典型值)。 当VDD上的电压低于负电压阈值(V IT - )或手动复位拉低逻辑(V MR _L )。当V DD 上升到V IT - 加滞后(V IT + )和手动复位( MR )时,复位信号被清除)浮动或高于V MR _H ,复位时间延迟(t D )到期??梢酝ü贑T引脚和地之间连接一个电容来编程复位延时。对于快速复位,CT引脚可以悬空。 附加功能:低上电复位电压(V POR ), MR 和VDD的内置线路抗扰度?;?,内置迟滞,低开漏输出漏电流(I LKG(OD))。 TPS3840是一款完美的电压监测解决方案,适用于工业应用和电池供电/低功耗应用。 结果 结果 结果 结果 结果 结果 结果 结果 结果 结果 特性 宽工作电压:1.5 V至10 V 纳米电源电流:350 nA(典型值) 固定阈值电压(V IT - ) 阈值从1.6 V到4.9 V,步长为0.1 V 高精度:1%(典型值) 内置滞后(V IT + ) 1.6 V&lt; V IT - ≤3.1V= 100mV(典...
      发表于 01-08 17:51 ? 861次 阅读
      TPS3840 具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器

      INA240-SEP 采用增强型航天塑料且具有增强型 PWM 抑制功能的 80V、高/低侧、零漂移电流检测放大器

      INA240-SEP器件是一款电压输出,电流检测放大器,具有增强的PWM反射功能,能够在宽共模电压下检测分流电阻上的压降范围为-4V至80V,与电源电压无关。负共模电压允许器件在地下工作,适应典型电磁阀应用的反激时间。 EnhancedPWM抑制为使用脉冲宽度调制(PWM)信号的大型共模瞬变(ΔV/Δt)系统(如电机驱动和电磁阀控制系统)提供高水平的抑制。此功能可实现精确的电流测量,无需大的瞬态电压和输出电压上的相关恢复纹波。 该器件采用2.7 V至5.5 V单电源供电,最大电源电流为2.4 mA 。固定增益为20 V /V.零漂移架构的低失调允许电流检测,分流器上的最大压降低至10 mV满量程。 特性 VID V62 /18615 抗辐射 单事件闩锁(SEL)免疫43 MeV-cm 2 /mgat 125° ELDRS每次使用晶圆批次可达30 krad(Si) TotalIonizing Dose(TID)RLAT至20krad(Si) 空间增强塑料 受控基线 金线 NiPdAu LeadFinish < /li> 一个装配和测试现场 一个制造现场 可用于军用(-55°C至125°C)温度范围 ExtendedProduct生命周期 扩展产品更改通知 产品可追溯性 用于低释气的增强型模具化合物 增强型PWM抑制 出色...
      发表于 01-08 17:51 ? 477次 阅读
      INA240-SEP 采用增强型航天塑料且具有增强型 PWM 抑制功能的 80V、高/低侧、零漂移电流检测放大器

      LM96000 具有集成风扇控制的硬件监控器

      LM96000硬件监视器具有与SMBus 2.0兼容的双线数字接口。使用8位ΣΔADC,LM96000测量: 两个远程二极管连接晶体管及其自身裸片的温度 VCCP,2.5V,3.3 VSBY,5.0V和12V电源(内部定标电阻)。 为了设置风扇速度,LM96000有三个PWM输出,每个输出由三个温度区域之一控制。支持高和低PWM频率范围。 LM96000包括一个数字滤波器,可调用该滤波器以平滑温度读数,从而更好地控制风扇速度。 LM96000有四个转速计输入,用于测量风扇速度。包括所有测量值的限制和状态寄存器。 特性 符合SMBus 2.0标准的2线制串行数字接口 8位ΣΔADC 监控VCCP,2.5V,3.3 VSBY,5.0V和12V主板/处理器电源 监控2个远程热二极管 基于温度读数的可编程自主风扇控制 风扇控制温度读数的噪声过滤 1.0°C数字温度传感器分辨率 3 PWM风扇速度控制输出 提供高低PWM频率范围 4风扇转速计输入 监控5条VID控制线 24针TSSOP封装 XOR-tree测试模式< /li> Key Specifications Voltage Measurement Accuracy ±2% FS (max) Resolution 8-bits, 1°C Temperature Sensor Accuracy ±3°C (max) Temperature ...
      发表于 01-08 17:51 ? 580次 阅读
      LM96000 具有集成风扇控制的硬件监控器

      LM63 具有集成风扇控制的准确远程二极管数字温度传感器

      LM63是一款带集成风扇控制的远程二极管温度传感器。 LM63精确测量:(1)自身温度和(2)二极管连接的晶体管(如2N3904)或计算机处理器,图形处理器单元(GPU)和其他ASIC上常见的热敏二极管的温度。 LM63远程温度传感器的精度针对串联电阻和英特尔0.13μm奔腾4和移动奔腾4处理器-M热敏二极管的1.0021非理想性进行了工厂调整。 LM63有一个偏移寄存器,用于校正由其他热二极管的不同非理想因素引起的误差。 LM63还具有集成的脉冲宽度调制(PWM)开漏风扇控制输出。风扇速度是远程温度读数,查找表和寄存器设置的组合。 8步查找表使用户能够编程非线性风扇速度与温度传递函数,通常用于静音声学风扇噪声。 特性 准确感应板载大型处理器或ASIC上的二极管连接2N3904晶体管或热二极管 准确感知其自身温度< /li> 针对英特尔奔腾4和移动奔腾4处理器-M热二极管的工厂调整 集成PWM风扇速度控制输出 使用用户可编程降低声学风扇噪音8 -Step查找表 用于 ALERT 输出或转速计输入,功能的多功能,用户可选引脚 用于测量风扇RPM的转速计输入< /li> 用于测量典型应用中脉冲宽度调制功率的风扇转速的Smart-Tach模式 偏移寄存器可针对...
      发表于 01-08 17:51 ? 971次 阅读
      LM63 具有集成风扇控制的准确远程二极管数字温度传感器

      AWR1843 集成 DSP、MCU 和雷达加速器的 76GHz 至 81GHz 单芯片汽车雷达传感器

      AWR1843器件是一款集成的单芯片FMCW雷达传感器,能够在76至81 GHz频段内工作。该器件采用TI的低功耗45纳米RFCMOS工艺制造,可在极小的外形尺寸内实现前所未有的集成度。 AWR1843是汽车领域低功耗,自监控,超精确雷达系统的理想解决方案。 AWR1843器件是一款独立的FMCW雷达传感器单芯片解决方案,可简化在76至81 GHz频段内实施汽车雷达传感器。它基于TI的低功耗45纳米RFCMOS工艺,可实现具有内置PLL和A2D转换器的3TX,4RX系统的单片实现。它集成了DSP子系统,其中包含TI的高性能C674x DSP,用于雷达信号处理。该设备包括BIST处理器子系统,负责无线电配置,控制和校准。此外,该器件还包括一个用户可编程ARM R4F,用于汽车接口。硬件加速器??椋℉WA)可以执行雷达处理,并可以帮助在DSP上保存MIPS以获得更高级别的算法。简单的编程模型更改可以实现各种传感器实现(短,中,长),并且可以动态重新配置以实现多模传感器。此外,该设备作为完整的平台解决方案提供,包括参考硬件设计,软件驱动程序,示例配置,API指南和用户文档。 特性 FMCW收发器 集成PLL,发送器,接收...
      发表于 01-08 17:51 ? 2142次 阅读
      AWR1843 集成 DSP、MCU 和雷达加速器的 76GHz 至 81GHz 单芯片汽车雷达传感器

      OPA4388 10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器

      OPAx388(OPA388,OPA2388和OPA4388)系列高精度运算放大器是超低噪声,快速稳定,零漂移,零交叉器件,可实现轨到轨输入和输出运行。这些特性及优异交流性能与仅为0.25μV的偏移电压以及0.005μV/°C的温度漂移相结合,使OPAx388成为驱动高精度模数转换器(ADC)或缓冲高分辨率数模转换器(DAC)输出的理想选择。该设计可在驱动模数转换器(ADC)的过程中实现优异性能,不会降低线性度.OPA388(单通道版本)提供VSSOP-8,SOT23 -5和SOIC-8三种封装.OPA2388(双通道版本)提供VSSOP-8和SO-8两种封装.OPA4388(四通道版本)提供TSSOP-14和SO-14两种封装。上述所有版本在-40°C至+ 125°C扩展工业温度范围内额定运行。 特性 超低偏移电压:±0.25μV 零漂移:±0.005μV/°C 零交叉:140dB CMRR实际RRIO 低噪声:1kHz时为7.0nV /√ Hz 无1 /f噪声:140nV < sub> PP (0.1Hz至10Hz) 快速稳定:2μs(1V至0.01%) 增益带宽:10MHz 单电源:2.5V至5.5V 双电源:±1.25V至±2.75V 真实轨到轨输入和输出 已滤除电磁干扰( EMI)/射频干扰(RFI)的输入 行业标...
      发表于 01-08 17:51 ? 1804次 阅读
      OPA4388 10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器

      TLV2314-Q1 3MHz、低功耗、内置 EMI 滤波器的 RRIO 运算放大器

      TLVx314-Q1系列单通道,双通道和四通道运算放大器是新一代低功耗,通用运算放大器的典型代表。该系列器件具有轨到轨输入和输出(RRIO)摆幅,低静态电流(5V时典型值为150μA),3MHz高带宽等特性,非常适用于需要在成本与性能间实现良好平衡的各类电池供电型应用。 TLVx314-Q1系列可实现1pA低输入偏置电流,是高阻抗传感器的理想选择。 TLVx314-Q1器件采用稳健耐用的设计,方便电路设计人员使用。该器件具有单位增益稳定性,支持轨到轨输入和输出(RRIO),容性负载高达300PF,集成RF和EMI抑制滤波器,在过驱条件下不会出现反相并且具有高静电放电(ESD)?;ぃ?kV人体模型(HBM))。 此类器件经过优化,适合在1.8V(±0.9V)至5.5V(±2.75V)的低电压状态下工作并可在-40°C至+ 125°C的扩展工业温度范围内额定运行。 TLV314-Q1(单通道)采用5引脚SC70和小外形尺寸晶体管(SOT)-23封装.TLV2314-Q1(双通道版本)采用8引脚小外形尺寸集成电路(SOIC)封装和超薄外形尺寸(VSSOP)封装。四通道TLV4314-Q1采用14引脚薄型小外形尺寸(TSSOP)封装。 特性 符合汽车类应用的要求 具...
      发表于 01-08 17:51 ? 295次 阅读
      TLV2314-Q1 3MHz、低功耗、内置 EMI 滤波器的 RRIO 运算放大器

      DRV5021 2.5V 至 5.5V 霍尔效应单极开关

      DRV5021器件是一款用于高速应用的低压数字开关霍尔效应传感器。该器件采用2.5V至5.5V电源工作,可检测磁通密度,并根据预定义的磁阈值提供数字输出。 该器件检测垂直于封装面的磁场。当施加的磁通密度超过磁操作点(B OP )阈值时,器件的漏极开路输出驱动低电压。当磁通密度降低到小于磁释放点(B RP )阈值时,输出变为高阻抗。由B OP 和B RP 分离产生的滞后有助于防止输入噪声引起的输出误差。这种配置使系统设计更加强大,可抵抗噪声干扰。 该器件可在-40°C至+ 125°C的宽环境温度范围内始终如一地工作。 特性 数字单极开关霍尔传感器 2.5 V至5.5 V工作电压V CC 范围 磁敏感度选项(B OP ,B RP ): DRV5021A1:2.9 mT,1.8 mT DRV5021A2:9.2 mT,7.0 mT DRV5021A3:17.9 mT,14.1 mT 快速30-kHz感应带宽 开漏输出能够达到20 mA 优化的低压架构 集成滞后以增强抗噪能力 工作温度范围:-40° C至+ 125°C 标准工业封装: 表面贴装SOT-23 所有商标均为其各自所有者的财产。 参数 与其它产品相比?霍尔效应锁存器和开关 ? Type Supply Voltage (Vcc) (Min) (V...
      发表于 01-08 17:51 ? 464次 阅读
      DRV5021 2.5V 至 5.5V 霍尔效应单极开关

      TLV1805-Q1 具有关断功能的 40V 微功耗推挽式汽车类高电压比较器

      TLV1805-Q1高压比较器提供宽电源范围,推挽输出,轨到轨输入,低静态电流,关断的独特组合和快速输出响应。所有这些特性使该比较器非常适合需要检测正或负电压轨的应用,如智能二极管控制器的反向电流?;?,过流检测和过压?;さ缏?,其中推挽输出级用于驱动栅极p沟道或n沟道MOSFET开关。 高峰值电流推挽输出级是高压比较器的独特之处,它具有允许输出主动驱动负载到电源轨的优势具有快速边缘速率。这在MOSFET开关需要被驱动为高或低以便将主机与意外高压电源连接或断开的应用中尤其有价值。低输入失调电压,低输入偏置电流和高阻态关断等附加功能使TLV1805-Q1足够灵活,可以处理几乎任何应用,从简单的电压检测到驱动单个继电器。 TLV1805-Q1符合AEC-Q100标准,采用6引脚SOT-23封装,额定工作温度范围为-40°C至+ 125°C。 特性 AEC-Q100符合以下结果: DeviceTemperature 1级:-40°C至+ 125°C环境温度工作温度 器件HBMESD分类等级2 器件CDM ESD分类等级C4A 3.3 V至40 V电源范围 低静态电流:每个比较器150μA 两个导轨以外的输入共模范围 相位反转?;?推 - 拉输出 250ns传播延迟 低输入失...
      发表于 01-08 17:51 ? 469次 阅读
      TLV1805-Q1 具有关断功能的 40V 微功耗推挽式汽车类高电压比较器

      TMP461-SP 耐辐射 (RHA) 高精度远程和本地温度传感器

      这个远程温度传感器通常采用低成本分立式NPN或PNP晶体管,或者基板热晶体管/二极管,这些器件都是微处理器,模数转换器(ADC),数模转换器(DAC),微控制器或现场可编程门阵列(FPGA)中不可或缺的部件。本地和远程传感器均用12位数字编码表示温度,分辨率为0.0625°C。此两线制串口接受SMBus通信协议,以及多达9个不同的引脚可编程地址。 该器件将诸如串联电阻抵消,可编程非理想性因子(η因子),可编程偏移,可编程温度限制和可编程数字滤波器等高级特性完美结合,提供了一套准确度和抗扰度更高且稳健耐用的温度监控解决方案。 TMP461-SP是在各种分布式遥测应用中进行多位置高精度温度测量的理想选择这类集成式本地和远程温度传感器可提供一种简单的方法来测量温度梯度,进而简化了航天器维护活动。该器件的额定电源电压范围为1.7V至3.6V,额定工作温度范围为-55 °C至125°C。 特性 符合QMLV标准:5962-1721801VXC 热增强型HKU封装 经测试,在50rad /s的高剂量率(HDR)下,可抵抗高达50krad(Si)的电离辐射总剂量(TID) 经测试,在10mrad /s的低剂量率(LDR)下,可抵抗高达100krad(Si)的电离辐射...
      发表于 01-08 17:51 ? 499次 阅读
      TMP461-SP 耐辐射 (RHA) 高精度远程和本地温度传感器

      LP87524P-Q1 用于 AWR 和 IWR MMIC 的四个 4MHz 降压转换器

      LP87524B /J /P-Q1旨在满足各种汽车电源应用中最新处理器和平台的电源管理要求。该器件包含四个降压DC-DC转换器内核,配置为4个单相输出。该器件由I 2 C兼容串行接口和enableignals控制。 自动PFM /PWM(自动模式)操作可在宽输出电流范围内最大限度地提高效率。 LP87524B /J /P-Q1支持远程电压检测,以补偿稳压器输出和负载点(POL)之间的IR压降,从而提高输出电压的精度。此外,开关时钟可以强制为PWM模式,也可以与外部时钟同步,以最大限度地减少干扰。 LP87524B /J /P-Q1器件支持负载电流测量,无需增加外部电流检测电阻器。此外,LP87524B /J /P-Q1还支持可编程的启动和关闭延迟以及与信号同步的序列。这些序列还可以包括GPIO信号,以控制外部稳压器,负载开关和处理器复位。在启动和电压变化期间,器件控制输出压摆率,以最大限度地减少输出电压过冲和浪涌电流。 特性 符合汽车应用要求 AEC-Q100符合以下结果: 设备温度等级1:-40°C至+ 125°C环境工作温度 输入电压:2.8 V至5.5 V 输出电压:0.6 V至3.36 V 四个高效降压型DC-DC转换器内核: 总输出电流高达10 A 输出电压漏电率...
      发表于 01-08 17:51 ? 863次 阅读
      LP87524P-Q1 用于 AWR 和 IWR MMIC 的四个 4MHz 降压转换器

      TAS2562 具有扬声器 IV 检测功能的数字输入单声道 D 类音频放大器

      TAS2562是一款数字输入D类音频放大器,经过优化,能够有效地将高峰值功率驱动到小型扬声器应用中。 D类放大器能够在电压为3.6 V的情况下向6.1负载提供6.1 W的峰值功率。 集成扬声器电压和电流检测可实现对扬声器的实时监控。这允许在将扬声器保持在安全操作区域的同时推动峰值SPL。具有防止掉电的电池跟踪峰值电压限制器可优化整个充电周期内的放大器裕量,防止系统关闭。 I 2 S /TDM + I中最多可有四个器件共用一个公共总线 2 C接口。 TAS2562器件采用36球,0.4 mm间距CSP封装,尺寸紧凑。 高性能D类放大器 6.1 W 1%THD + N(3.6 V时4Ω) 5 W 1%THD + N(在3.6 V时为8Ω) 15μVrmsA加权空闲信道噪声 112.5dB SNR为1%THD + N(8Ω) 100dB PSRR,200 mV PP 纹波频率为20 - 20 kHz 83.5%效率为1 W (8Ω,VBAT = 4.2V) &lt; 1μAHW关断VBAT电流 扬声器电压和电流检测 VBAT跟踪峰值电压限制器,具有欠压预防 8 kHz至192 kHz采样率 灵活的用户界面 I 2 S /TDM:8通道(32位/96 kHz) I 2 < /sup> C:4个可选择的地址 MCLK免费操作 低流行并点...
      发表于 01-08 17:51 ? 870次 阅读
      TAS2562 具有扬声器 IV 检测功能的数字输入单声道 D 类音频放大器

      LM358B 双路运算放大器

      LM358B和LM2904B器件是业界标准的LM358和LM2904器件的下一代版本,包括两个高压(36V)操作放大器(运算放大器)。这些器件为成本敏感型应用提供了卓越的价值,具有低失调(300μV,典型值),共模输入接地范围和高差分输入电压能力等特点。 LM358B和LM2904B器件简化电路设计具有增强稳定性,3 mV(室温下最大)的低偏移电压和300μA(典型值)的低静态电流等增强功能。 LM358B和LM2904B器件具有高ESD(2 kV,HBM)和集成的EMI和RF滤波器,可用于最坚固,极具环境挑战性的应用。 LM358B和LM2904B器件采用微型封装,例如TSOT-8和WSON,以及行业标准封装,包括SOIC,TSSOP和VSSOP。 特性 3 V至36 V的宽电源范围(B版) 供应 - 电流为300μA(B版,典型值) 1.2 MHz的单位增益带宽(B版) 普通 - 模式输入电压范围包括接地,使能接地直接接地 25°C时低输入偏移电压3 mV(A和B型号,最大值) 内部RF和EMI滤波器(B版) 在符合MIL-PRF-38535的产品上,除非另有说明,否则所有参数均经过测试。在所有其他产品上,生产加工不一定包括所有参数的测试。 所...
      发表于 01-08 17:51 ? 911次 阅读
      LM358B 双路运算放大器

      LP87565-Q1 具有集成开关的四相 8A + 8A 降压转换器

      LP8756x-Q1器件专为满足各种汽车电源应用中最新处理器和平台的电源管理要求而设计。该器件包含四个降压直流/直流转换器内核,这些内核可配置为1个四相输出,1个三相和1个单相输出,2个两相输出,1个两相和2个单相输出,或者4个单相输出。该器件由I 2 C兼容串行接口和使能信号进行控制。 自动脉宽调制(PWM)到脉频调制(PFM)操作( AUTO模式)与自动增相和切相相结合,可在较宽输出电流范围内最大限度地提高效率.LP8756x-Q1支持对多相位输出的远程差分电压检测,可补偿稳压器输出与负载点(POL)之间的IR压降,从而提高输出电压的精度。此外,可以强制开关时钟进入PWM模式以及将其与外部时钟同步,从而最大限度地降低干扰。 LP8756x- Q1器件支持在不添加外部电流检测电阻器的情况下进行负载电这个序列可能包括用于控制外部稳压器,负载开关和处理器复位的GPIO信号。在启动和电压变化期间,该器件会对输出压摆率进行控制,从而最大限度地减小输出电压过冲和浪涌电流。 特性 符合汽车类标准 具有符合AEC-Q100标准的下列特性: 器件温度1级:-40℃至+ 125℃的环境运行温度范围 器件HBM ESD分类等级2 器件CDM ES...
      发表于 01-08 17:51 ? 495次 阅读
      LP87565-Q1 具有集成开关的四相 8A + 8A 降压转换器

      LM2902LV 行业标准、低电压放大器

      LM290xLV系列包括双路LM2904LV和四路LM2902LV运算放大器。这些器件由2.7V至5.5V的低电压供电。 这些运算放大器可以替代低电压应用中的成本敏感型LM2904和LM2902。有些应用是大型电器,烟雾探测器和个人电子产品.LM290xLV器件在低电压下可提供比LM290x器件更佳的性能,并且功能耗尽。这些运算放大器具有单位增益稳定性,并且在过驱情况下不会出现相位反转.ESD设计为LM290xLV系列提供了至少2kV的HBM规格。 LM290xLV系列采用行业标准封装。这些封装包括SOIC,VSSOP和TSSOP封装。 特性 适用于成本敏感型系统的工业标准放大器 低输入失调电压:±1mV < LI>共模电压范围包括接地 单位增益带宽:1MHz的 低宽带噪声:40nV /√赫兹 低静态电流:90μA/通道 单位增益稳定 可在2.7V至5.5V的电源电压下运行 提供双通道和四通道型号< /li> 严格的ESD规格:2kV HBM 扩展温度范围:-40°C至125°C 所有商标均为各自所有者的财产。 参数 与其它产品相比?通用 运算放大器 ? Number of channels (#) Total Supply Voltage (Min) (+5V=5, +/-5V=10) Total Supply Voltage (Max) (+5V...
      发表于 01-08 17:51 ? 434次 阅读
      LM2902LV 行业标准、低电压放大器

      LP87561-Q1 具有集成开关的四相 16A 降压转换器

      LP8756x-Q1器件专为满足各种汽车电源应用中最新处理器和平台的电源管理要求而设计。该器件包含四个降压直流/直流转换器内核,这些内核可配置为1个四相输出,1个三相和1个单相输出,2个两相输出,1个两相和2个单相输出,或者4个单相输出。该器件由I 2 C兼容串行接口和使能信号进行控制。 自动脉宽调制(PWM)到脉频调制(PFM)操作( AUTO模式)与自动增相和切相相结合,可在较宽输出电流范围内最大限度地提高效率.LP8756x-Q1支持对多相位输出的远程差分电压检测,可补偿稳压器输出与负载点(POL)之间的IR压降,从而提高输出电压的精度。此外,可以强制开关时钟进入PWM模式以及将其与外部时钟同步,从而最大限度地降低干扰。 LP8756x- Q1器件支持在不添加外部电流检测电阻器的情况下进行负载电这个序列可能包括用于控制外部稳压器,负载开关和处理器复位的GPIO信号。在启动和电压变化期间,该器件会对输出压摆率进行控制,从而最大限度地减小输出电压过冲和浪涌电流。 特性 符合汽车类标准 具有符合AEC-Q100标准的下列特性: 器件温度1级:-40℃至+ 125℃的环境运行温度范围 器件HBM ESD分类等级2 器件CDM ES...
      发表于 01-08 17:51 ? 489次 阅读
      LP87561-Q1 具有集成开关的四相 16A 降压转换器
      久久这里只有精品,在线视频 国产 日韩 欧美,国产精品人妻在线观看,亚洲中文欧美在线视频 会宁县| 北辰区| 称多县| 道真| 彭州市| 县级市| 定日县| 潮州市| 清苑县| 大新县| 额济纳旗| 景德镇市| 双柏县| 噶尔县| 安陆市| 铜梁县| 桐乡市| 绥棱县| 大同市| 汉中市| 长治县| 东乡县| 陇南市| 凯里市| 洞头县| 昌吉市| 镇康县| 沙雅县| 双江| 丽江市| 屏山县| 玉溪市| 嵊泗县| 沛县| 乡城县| 镇宁| 且末县| 游戏| 海伦市| 高平市| 白朗县| http://444 http://444 http://444 http://444 http://444 http://444